

SYSTEMÖKOLOGIE ETHZ

SYSTEMS ECOLOGY ETHZ

January 1995

Eidgenössische Technische Hochschule Zürich ETHZ
Swiss Federal Institute of Technology Zurich
Departement für Umweltnaturwissenschaften / Department of Environmental Sciences
Institut für Terrestrische Ökologie / Institute of Terrestrial Ecology

Bericht / Report Nr. 21

Introducing RASS -

The RAMSES Simulation Server

J. Thöny, A. Fischlin, D. Gyalistras

The System Ecology Reports consist of preprints and technical reports. Preprints are ar-
ticles, which have been submitted to scientific journals and are hereby made available to
interested readers before actual publication. The technical reports allow for an exhaustive
documentation of important research and development results.

Die Berichte der Systemökologie sind entweder Vorabdrucke oder technische Berichte.
Die Vorabdrucke sind Artikel, welche bei einer wissenschaftlichen Zeitschrift zur Publi-
kation eingereicht worden sind; zu einem möglichst frühen Zeitpunkt sollen damit diese
Arbeiten interessierten LeserInnen besser zugänglich gemacht werden. Die technischen
Berichte dokumentieren erschöpfend Forschungs- und Entwicklungsresultate von allge-
meinem Interesse.

The first part of this report has been published. Please cite as:

Thöny, J., Fischlin, A. & Gyalistras, D., 1994. RASS: Towards bridging
the gap between interactive and off-line simulations. In: J. Halin,
W.K.a.R.R. (ed.), CISS- First Joint Conference of International
Simulation Societies, Zürich, Switzerland, The Society for Computer
Simulation International, P:O: Box 17900, San Diego, Cal. 92177,
USA, p.^pp. 99-103

Adressen der Autoren / Addresses of the authors:

J. Thöny, Dr. A. Fischlin, D. Gyalistras
Systemökologie ETH Zürich
Institut für Terrestrische Ökologie
Grabenstrasse 3
CH-8952 Schlieren/Zürich
S W I T Z E R L A N D

e-mail: sysecol@ito.umnw.ethz.ch

© 1993 Systemökologie ETH Zürich

Introducing RASS –

The RAMSES Simulation Server
Jürg Thöny

with contributions from A. Fischlin and D. Gyalistras

RASS forms a new component of the RAMSES1 modelling and simulation concept. It
allows to automatically translate interactive RAMSES model definition programs and
to execute them in a batch mode on a high performance computer.

This report describes RASS and its implementation RASS 1.1. It is a collection of
three documents:

1. RASS: Towards bridging the gap between interactive and off-line simulations.

2. RASS 1.1 User's Guide

3. RASS 1.1 Developer's Guide

The first document is an introduction to the general ideas and concepts behind RASS
and was presented in 1994 at the CISS - First Joint Conference of International
Simulation Societies, Zuerich.

The user's guide describes how to install and use RASS on Unix workstations. It also
contains a tutorial guiding the users through a sample transition from RAMSES to
RASS.

The developer's guide is a description of the RASS modules and the development
environment, as required for further development.

1 Research Aids for the Modelling and Simulation of Environmental Systems

RASS:
Towards bridging the gap between interactive

and off-line simulation.

Jürg Thöny, Andreas Fischlin and Dimitrios Gyalistras
Systems Ecology

Institute of Terrestrial Ecology
Swiss Federal Institute of Technology Zürich (ETHZ)

CH-8952 Schlieren/Zürich

ABSTRACT modeling of ill-defined systems. However, at later stages,
i.e. when simulation studies such as sensitivity analysis,
parameter identification, or stability properties are of
prime interest, batch production of simulation results is
needed. In order to satisfy both needs during the entire
course of a research project, a simulation software must
support both interactive and batch simulations.

Interactive model exploration is an important step in
the process of model-building of ill-defined systems such
as ecosystems, a task which is well supported by
RAMSES (Research Aids for the Modelling and
Simulation of Environmental Systems). However,
interactive simulation is of minor interest at a later stage
of research, when large scale batch oriented simulation
experiments are needed.

The RAMSES [Research Aids for the Modelling and
Simulation of Environmental Systems] software (Fischlin
1991) was designed to support interactive, modular mo-
deling and simulation of ill-defined systems with one or
any combination of the classical model formalisms SQM
[SeQuential Machine], DESS [Differential Equation
System Specification], DEVS [Discrete EVent System
Specification] (Zeigler 1976, 1979; Wymore 1984).

RASS, the RAMSES Simulation Server, typically
located on a high performance computer, translates, com-
piles, links, and executes in a batch mode interactive
RAMSES model definition programs [MDP]. MDPs
must be given in source form and formulated according to
one or any combination of the following standard forma-
lisms: SQM (Sequential Machine), DESS (Differential
Equation System Specification), or DEVS (Discrete
EVent System Specification). The simulation results
generated and returned by RASS can then be explored
interactively by means of the post-analysis component of
RAMSES.

In RAMSES, any model implementation is made in
form of a so-called MDP [Model Definition Program]
(Fischlin et al. 1994). A MDP represents an interactive
program and therefore shares the common problems of all
sophisticated interactive software. These are the limited
portability and the computational overhead of the user
interface.

RASS was found to allow for automatic translation of
interactive programs developed for a graphical user-inter-
face with windows and menus in order to execute them in
a batch mode to produce correct and reliable simulation
results. Three complex case studies from the field of
ecology and engineering showed that performance gains of
1'100-7'200% (overhead included) can be obtained when
RASS is run on a SUN S10 server relative to the time
needed when running the MDP interactively on an average
personal computer. Since all transfers showed to be user-
friendly and smooth, we concluded that RASS offers
RAMSES simulationists an efficient and attractive alter-
native for solving interactive MDPs whenever off-line
simulations are needed, or when it is a necessity because
of the high computing requirements.

Thus the following questions arise: Is it possible to
reuse an interactive simulation program, such as a
RAMSES-MDP for non-interactive batch calculations
without any changes on the source level? Which problems
need to be solved to correctly run MDPs within a batch
simulation environment? How valid are the simulation
results? Which gain in performance can be achieved thanks
to reduced graphics overhead and more powerful machines?

The here presented solution RASS [RAMSES
Simulation Server] forms a new component of RAMSES.
RASS receives interactive MDPs in source form, runs
them off-line on a simulation server, and generates simu-
lation results, which can be again explored interactively
by the Post-Analysis component of RAMSES. First we
present the architecture of RASS and discuss the concep-
tual problems which had to be solved. Three case studies
serve to demonstrate the obtainable performance gain and
the quality of the simulation results. Finally, portability
issues and future enhancements are discussed.

1 INTRODUCTION

The simulation of ill-defined systems, e.g. ecological
systems, challenge most existing simulation software by
specific, sophisticated requirements (Cellier and Fischlin,
1982; Kreutzer 1986; Fischlin and Ulrich 1987; Vancso et
al 1987; Vancso 1990). 2 MATERIAL

The current implementation of RAMSES covers inter-
active MDP development and simulation by several

At an early stage of a research project, an interactive
simulation environment is of paramount help for the

components such as the standard DM [Dialog Machine]
(Fischlin and Schaufelberger 1987; Fischlin et al. 1987),
the standard MW [ModelWorks], and the PA-session
[Post-simulation Analysis].

3.2 Design and Implementation

RASS was designed to fulfil the following main
requirements:

RASS has to achieve a high portability in two ways:
First it should be easily portable. Second any MDP
including its corresponding input/output data files should
be exchangeable between the batch and interactive simu-
lation environment without any changes.

RASS was implemented in Modula-2 using
MacMETH (Wirth et al. 1992) on Macintosh computers
and EPC Modula-2 (Anonymous 1992) on SUN worksta-
tions. It uses a new batch oriented implementation of the
DM [Batch-Dialog Machine].

The simulation results of RASS have to be reliable,
i.e. the batch processing must not hamper the validity of
the simulation results.

Three MDPs, ForClim, Diversity, and NumInt were
used as case studies.

All simulation experiments were performed either on
an Apple Macintosh Quadra 700 for RAMSES or on a
SUN S10 for RASS. On the Macintosh we measured the
time inside the MDPs with no other applications running
during simulation. On the SUN we measured the
simulation/experiment with the Unix time command
during a minimal work load.

The transition from the interactive RAMSES to the
batch oriented RASS should be smooth, and require a
minimum of user interactions.

3.2.1 RASS Architecture

RASS resides on top of several software layers, which
enhance portability and software maintenance (Fig. 2).

3 RESULTS

MW

DM

Modula 2 lib., OS/ HW

RAMSES-MDP

RASS-MW

Batch-DM

SysDep, Portab & Math

Modula 2 lib., OS/ HW

3.1 Simulation with RASS

A RASS task is conceptually a RAMSES simulation
session (Fischlin 1991). However, RASS implements the
simulation session in a different way.

RAMSES

RASS

Interactive
modeling & simulation

Interactive
Post Analysis

MW

Batch simulation

PA

Fig. 1: State transitions while developing and
solving models using RASS within RAMSES.

Fig. 2: Architecture of RAMSES and RASS.

All RAMSES software is implemented on top of the
DM using the language Modula-2. The DM is a library
that allows to program interactive applications indepen-
dently from the underlying graphical user interface. All
interactive DM-commands are designed as a program state
transition with a known precondition and a defined post-
condition. The DM allows the transition only if the pre-
condition is true and the postcondition can be fulfilled;
otherwise the interactive DM modally demands a user
intervention, usually with a default answer to the request.

A typical modeling-simulation cycle (Fig. 1) involves the
following steps:

1 Develop a model interactively in the RAMSES
simulation and modeling session, and run local
simulations interactively.

2 Produce model behaviour with RASS in a batch
mode.

3 Analyse the simulation results interactively in the
PA session.

Since RASS is not interactive, a new DM implemen-
tation [Batch-DM] was necessary. The Batch-DM has the
same programmatic interface, but has no visible user in-
terface. An optional terminal like I/O is provided. The
various DM components are maintained internally, such

that the state transitions are the same as in the interactive
DM.

3.3 Case Studies

We selected three case studies to cover all three
currently by RAMSES supported standard modeling
formalisms (SQM, DEVS, and DESS):

The Batch-DM is built solely on top of the two
modules SysDep and Portab. The only exception is the
DMMathLib . SysDep and Portab hide the local Modula-2
library and the OS/hardware. To prevent performance loss,
we implemented the DMMathLib with direct calls to the
machine dependent math library, instead of encapsulating
these functions in SysDep.

a) ForClim (Bugmann 1994), a SQM that models the
stochastic species succession of forests and is currently
used to study the impact of climatic change on forests
(Bugmann and Fischlin 1994). ForClim 's input data files
contained machine specific characters which had to be re-
moved before the ForClim was able to process them under
RASS. We ran that experiment that generates the so-called
reference output, which was not numerically identical;
but, since ForClim 's output depends on pseudo-random
numbers it is highly dependent on the precision of the
floating point instructions. However, the results deviate
only insignificantly from the expectations, and were
therefore interpreted as correct.

3.2.2 Running MDPs with RASS

Essential is that any MDP has the same execution
thread regardless whether executed interactively by MW or
by RASS.

A RAMSES-MDP has very few interactive
components. However due to the open system architecture
such as the DM interface, it is possible to add interactive
elements (Fig. 2). Since most of them are potential
branches in the execution thread, special care has to be
taken. The Batch-DM handles the core user interface
components of the DM as follows:

b) Diversity (Fischlin et al 1994), a DEVS simulat-
ing the reinvasion of species and diversity restoration on
an island, which has been hit by a volcanic eruption.
RASS returned exactly the same number of years for
diversity restoration as the interactive version.

Components without default actions are not imple-
mentable in the Batch-DM; they lead to a program abort.
However, in most cases they can be easily replaced by the
programmer with another DM function.

c) NumInt , a DESS that compares the position of an
earth satellite computed with fixed step integration
methods of various orders with an analytically determined
expectation. The purpose of NumInt is to explore the
range of valid simulation results, limited either by too big
or too small step sizes (rounding errors). The RASS re-
sults were the same for lower order integration methods,
whereas those of the higher order integration methods dif-
fered for the smaller step sizes due to the rounding errors.

Dialogues: DM dialogues entities have default values.
Therefore the dialogues lead to a predictable postcondition.

Menus: The menu structure is maintained internally, but
no menus are shown on a screen. However, execution of
menu commands is possible under program control.

Windows: No windows are provided, however the text
written on them is directed to a standard output file.

All three MDPs were transferable without any
changes. The only exception was ForClim which required
initially one iteration.

3.2.3 Data and Result Files
3.3.1 Performance Measurements

RASS is based on the same DM library interface as
the standard MW. Both expect and produce files in textual
form. Therefore the input and output files are fully
interchangeable.

In order to compare a simulation cycle of an interac-
tive MDP between interactive RAMSES and RASS, we
started measurements only from the moment of an already
developed RAMSES-MDP and neglected constant terms if
they were approximately the same on both hosts, e.g. the
time to build and link/load the MDP.

3.2.4 Current Implementation

A simulation experiment to be solved by RASS is
given by a MDP, and the corresponding input data files -
only these have to be transferred and converted according
to the conventions of the specific simulation host. The
transfer and translation can be accomplished, e.g. by the
means of FTP [File Transfer Protocol].

Terms:
tt = Turnaround time.
ts = Time to execute a simulation experiment.
tc = Time to transfer MDPs and/or data files to the

simulation host and transfer the result files back to
the PA host.

To provide a user-friendly transition from interactive
RAMSES to RASS we created a tool called
RASSMakeMake. It generates automatically a make script
that produces the executable simulation program.

ta = Time to set up the interactive analysis [PA] of the
results.

tt (RAMSES) = ts
tt (RASS) = ts + tc + taThe output of a simulation can be explored locally or

transferred back to the host where the interactive PA
resides.

Since ta << ts we get:
tt (RAMSES) = ts
tt (RASS) = ts + tc

MW
Mac

RASS
SUN

stash file. For each run were documented 95 variables at
600 simulation time points. Transfer of the stash file to
the local personal computer required 26s, such that,
together with the transfer of ForClim to the RASS-server,
tc = 76s. Loading of the PA-session required ca. 4s, and
setting up of the workspace (Fig. 3), including the prepa-
ration of all runs within PA, additional 12s, yielding ta =
16s. The graphical representation and tabulation of six
variables from a single simulation run required ca. 6s
(Fig. 3), whereas the simultaneous inspection of the same
variable from all ten runs required 27s. These times
increased by ca. 14 % (to 7s and 31s, respectively) when
the stash file was directly accessed via a LAN from the
mass storage device of the simulation server. Thus, the
average time to inspect one simulation run amounted to
ca. 30s, via the LAN to only 27s.

MDP tt=ts ts tc tt=ts+tc
ForClim 37800 3134 132 3266
Diversity 638 13 120 133
NumInt 70758 860 115 975

Table 1: Turnaround time in seconds of three case studies
in the interactive RAMSES environment on a Macintosh
Quadra 700 and the batch RASS environment on a SUN
S10.

The over-all performance gain obtainable by the simu-
lationist was a factor 12-82 for ts and a factor 11-72 for tt
(Table 1). The combined use of RASS and PA compares favourably

with the 85s needed for a single ForClim simulation with
the interactive MW on the simulationist’s computer. We
concluded that the RAMSES-PA not only allows to
efficiently and flexibly analyse batch simulation results,
but that it may even be of interest for inspecting model
behaviours interactively during a model development
phase.

3.3.2 Post Analysis

The RAMSES-PA session allows to interactively ex-
plore simulation results previously written to a stash file
by MW or RASS (Fig. 1). The PA supports an arbitrary
number of stash files, simulation runs per file, and models
per run, limited only by the computer’s available
memory. Based on MW, PA mimics the model
behaviours by reading the results from stash files, instead
of computing them on-line (Fig. 3). Not only does it
allow to compare stored results among several stash files,
but also with interactively simulated model behaviours.

4 DISCUSSION

4.1 Domain of RASS

From the perspective of the simulationist, the break
even point for RASS depends on the available computer
infrastructure. The easier to use and the faster the connec-
tion between the interactive and the RASS host is, the
smaller simulation experiments may get to be still
suitable.

The actual break even point is given by:

tt (RAMSES) = tt (RASS) = tc + ts (RASS)

=> ts (RAMSES) - ts (RASS) = tc

A gain in performance occurs if
tc < (ts (RAMSES) - ts (RASS))

A typical tc for a small model is less than 3 minutes.
The average performance gain for ts is a factor 12 to 82.

Given a model with tc = 3 minutes and a modest per-
formance factor of ts = 12, the break even point for a
single simulation run is reached for ts (RAMSES) = 196s.
Note, if a simulation experiment is executed within a
loop, the smaller tc becomes, and therefore the sooner the
break point may be reached.Fig. 3: Typical screen, here from the case study

ForClim, of a RAMSES post-analysis session
on the simulationist's personal computer. This
session supports the interactive analysis of the
uploaded simulation results by processing a stash
file, which RASS previously produced on the
simulation server.

For ForClim this was found to be already the case if a
structured simulation experiment consists at least of two
runs (See 3.3.2 Post Analysis).

4.2 Portability

In order to make Modula-2 code portable, special care
had to be taken. Modula-2 is a formally well-defined
language with some exceptions. In particular the type

We tested PA with ten ForClim simulation runs,
which lasted under RASS ts = 145s and produced a 944kB

transfer functions and the LONG type language extensions
caused portability problems. Therefore RASS and the
Batch-DM were written in a portable subset of Modula-2.

active exploration and analysis of the simulation results
under the RAMSES post-analysis [PA] session.

REFERENCESThere exists no standard library for Modula-2.
However, in order to port RASS to a different machine
only the modules SysDep, Portab, and DMMathLib have
to be re-implemented. SysDep and Portab consist of 593
lines of source code in the EPC Modula-2 imple-
mentation.

Anonymous. 1992. EPC Modula-2. User's Reference Manual.
Second Edition. January 1992. Edinburgh Portable Compilers Ltd.

Bugmann, H. 1994. "On the Ecology of Mountainous Forests in a
Changing Climate: A Simulation Study." Ph.D. thesis No. 10638, Swiss
Federal Institute of Technology Zürich (ETHZ).

Since the RASS binary to text conversion for
numbers is dependent of the IEEE floating-point standard,
it runs only on machines which follow this standard.

Bugmann, H. and Fischlin, A. 1994. "Comparing the behaviour of
mountainous forest succession models in a changing climate." In
Beniston, M. (ed.), Mountain Environments in Changing Climates.
Routdlege, London & New York: 206-221 (invited, refereed).

4.3 Planned Improvements Cellier, F.E. and Fischlin, A. 1982. "Computer-assisted modelling of
ill-defined systems." In Proceeding. of the 5th European Meeting on
Cybernetics and Systems Research, (University of Vienna, Austria,
April 8-11, 1980), McGraw-Hill, Washington, N.Y., 417-429.We plan to implement a RASS shell with communi-

cation facility. This would allow a user transparent
transfer of MDPs and/or data files. Fischlin, A.; Gyalistras, D.; Roth, O.; Ulrich, M.; Thöny, J.;

Nemecek, T.; Bugmann, H. and Thommen, F. 1994. ModelWorks 2.2:
An interactive simulations environment for work stations and personal
computers. Second, completely revized edition. Internal Report No. 14,
Systems Ecology Group, ETH Zurich.

Not every powerful host provides a Modula-2
compiler. It is planned to apply a Modula-2 to C transla-
tor to RASS and MDPs in order to run simulations on
these hosts. Since most C compilers generate optimised
code, an additional gain in performance could be expected.

Fischlin, A. and Schaufelberger, W. 1987. "Arbeitsplatzrechner im
technisch-naturwissenschaftlichen Hochschulunterricht." Bulletin
SEV/VSE, 78 (Januar): 15-21.

Fischlin, A. 1991. "Interactive Modeling and Simulation of
Environmental Systems on Workstations." In Möller, D.P.F. (ed.),
Analysis of Dynamic Systems in Medicine, Biology, and Ecology.
Informatik-Fachberichte 275, Springer, Berlin a.o. 131-145.

5 CONCLUSIONS

RASS is capable of solving correctly and efficiently
any simulation experiment, given it is defined in form of
a RAMSES-MDP (Model Definition Program).

Fischlin, A.; Mansour, M.A.; Rimvall, M. and Schaufelberger, W.
1987. "Simulation and computer aided control system design in
engineering education." In Troch,I., Kopacek,P. & Breitenecker, F.
(eds.), Simulation of Control Systems, Pergamon Press, Oxford a.o. 51-
60.

This is possible regardless of the original design for
interactive usage. We could demonstrate that the 'Dialog
Machine' provides a solid basis to write interactive
programs such as a RAMSES-MDPs, since they could be
executed in a batch mode with only few, insignificant
restrictions. Although the correctness of any MDP solved
by RASS can not be proven, at least for the case-studies
RASS produced correct results. Thus, the uploading from
an interactively developed RAMSES-MDP to a RASS
batch simulation server is possible and can even be
implemented in a smooth user transparent manner.

Fischlin, A. and Ulrich, M. 1987. "Interaktive Simulation schlecht-
definierter Systeme auf modernen Arbeitsplatzrechnern: die Modula-2
Simulationssoftware ModelWorks." In Proceedings of Simulation in
Biologie und Medizin, February, 27-28, 1987, Vieweg, Braunschweig:
1-8.

Kreutzer, W. 1986. System simulation: programming styles and
languages. Sydney a.o.: Addison-Wesley.

Vancso, K.; Fischlin, A. and Schaufelberger, W. 1987. "Die
Entwicklung interaktiver Modellierungs- und Simulationssoftware mit
Modula-2." In: Halin, J. (ed.), Simulationstechnik, Informatik-
Fachberichte 150, Springer, Berlin: 239-249.In the tested "real-world" case studies, we obtained

substantial average gains in performance (e.g. between
1'100% and 7'200% for the simulationist's turnaround-
time (Table 1)). Therefore RASS allows to profit in two
ways: First it allows to freely engage in interactive
development of complex simulation models on widely
available PCs or work-stations using the interactive
RAMSES software. Second, at later stages, i.e. when
complex, well defined simulation experiments are of
prime interest, the RAMSES-MDP can be easily trans-
ferred to more powerful machines, e.g. a super-computer,
running the RASS simulation server.

Vancso-Polacsek, K. 1990. "Theory and practice of computer
assisted simulation and modeling on professional workstations." Ph.D.
thesis No. 9104 Swiss Federal Institute of Technology Zürich (ETHZ).

Wymore, A.W. 1984. "Theory of Systems". In Handbook of
Software Engineering, Van Nostrand Reinhold Company, New York.

Wirth, N.; Gutknecht, J.; Heiz, W.; Schär, H.; Seiler; H., Vetterli,
C. and Fischlin, A. 1992. MacMETH. A fast Modula-2 language system
for the Apple Macintosh. User Manual. 4th. completely revised ed.,
Departement Informatik ETH Zürich, Switzerland.

Zeigler, B.P. 1976. Theory of modelling and simulation. Wiley,
New York a.o.

Zeigler, B.P. 1979. "Multilevel multiformalism modeling: an
ecosystem example." In Theoretical Systems Ecology, Academic Press,
New York, 17-54.

Since RASS is highly portable and can be imple-
mented easily on any host-computer, RASS provides a
user-friendly simulation environment. It allows smooth
transitions: a) from interactive work-station based to
simulation server based off-line simulations, b) from the
server back to simulationist's work-station for an inter-

RASS1 1.1 User's Guide
EPC-Version

Jürg Thöny

1 INTRODUCTION.. 1

2 DISTRIBUTION AND INSTALLATION... 1

3 RUNNING MDPS WITH RASS.. 2
3.1 Developing MDPs... 2
3.2 Transferring MDPs to the RASS host... 2
3.3 Building executable simulation programs.. 2
3.4 Running executable simulation programs ... 3

4 TUTORIAL... 4
4.1 Developing Sensitivity MDP.. 4
4.2 Transferring the MDP Sensitivity to the RASS host ... 5
4.3 Building the executable simulation program Sensitivity...................................... 6
4.4 Running the executable simulation program Sensitivity...................................... 7

5 TROUBLE SHOOTING.. 9

6 LITERATURE .. 10

1 RAMSES Simulation Server

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 1

1 Introduction

This user's guide describes how to install and use RASS on Unix workstations using the EPC
Modula-2 compiler.

This text assumes that you are familiar with ModelWorks (Fischlin et al., 1994). It is highly
recommended to read also (Fischlin, 1991) and (Thoeny et al., 1994). You should also be able to work
with Unix workstations.

RASS allows to run interactive ModelWorks Model Definition Programs [MDPs] in batch oriented
environments like Unix workstations.

The generated results of a batch simulation should be the same as on the interactive RAMSES host,
but you have to consider the following aspects:

1) The calculated results don't have to be numerical identical. This is due to the different floating point
hardware on different hosts. Especially simulations with very small step-sizes may produce detectable
differences. It is impossible to say on which host the quality of the results is better.

2) RASS ModelWorks is build on top of the Batch-DM (Thoeny et al., 1994). No user interactions
are possible. A RASS program will follow the default execution thread; it simulates default answers
on every interactive DM component (i.e. pressing the enter key in every modal dialogue).

2 Distribution and installation

RASS consists of the libraries libMWLib.a, libMWLib_x.a and the shell scripts MOD2mod,
DEF2def, listdepf, and RASSMakeMake. You have to install the libraries in your linker search path and
the shell scripts in the command search path of your shell. It is recommended to install the RASS
library in /usr/local/lib and the shell scripts in /usr/local/bin. Please ask your system administrator to
install these files.

If the installation in /usr/local isn't possible, you can also install RASS local to your home directory.
After copying the file libMWLib.a to the desired location, you have to run:

ranlib PATH_OF_LIB/libMWLib.a PATH_OF_LIB/libMWLib_x.a

To allow the linker to find the library, you have to specify the location using the
LD_LIBRARY_PATH environment variable. Please make sure, that the RASS shell scripts are in the
command search path of your shell (consult the documentation of your favoured shell).

The EPC Modula-2 environment has to be installed on the host prior using RASS. This has to be
done by your system administrator.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 2

3 Running MDPs with RASS

A simulation program is usually developed in the interactive RAMSES environment. Then the
Modula-2 source code and the input files are transferred to the RASS host. There you can build an
executable simulation program to finally run your simulation experiments.

3.1 Developing MDPs

Usually a MDP is developed on an interactive RAMSES host, where you should also plan and test
your simulation experiment. Beside the default strategy of the Batch-DM (default answers to
dialogues), RASS will simulate exactly one user event for you:

If you have an experiment installed in your MDP, RASS will execute it, otherwise RASS will
execute one simulation run.

Therefore, you can test your simulation program on the interactive RAMSES host prior transferring it
to the RASS host. If you start your simulation respectively experiment and get the desired result by
answering all eventual modal dialogues just by pressing the enter key, you can expect to get the same
behaviour on the RASS host.

3.2 Transferring MDPs to the RASS host

A developed MDP consists of one or several Modula-2 source files and optional data files. They have
to be transferred to the RASS host. Because most hosts have a different definition of text files, it is
highly recommended to use FTP (File Transfer Protocol) to transfer files, since it translates them
according to the specification of the target host.

The EPC Modula-2 compiler expects source files with the extension .mod and .def. All modules must
have the name Modulename.mod or Modulaname.def for definition modules. The naming is case
sensitive. If you transfer files from the RAMSES environment, they are usually named using the
extensions .MOD and .DEF. The two shell scripts MOD2mod and DEF2def performs this renaming
for you. To use these scripts, change to the directory where your source files reside and call both
scripts.

3.3 Building executable simulation programs

After you have transferred your source and data files to the RASS host, you can build an executable
simulation program. This involves both, the compilation of the sources and the linking with the MW
library. The shell script RASSMakeMake helps you with this task. Run RASSMakeMake in the
directory where your MDP resides. It will generate a file named Makefile. The Unix tool make uses
this file to perform the compilation and linking for you. Simply call make in the directory where your
MDP and the generated Makefile reside. Note, that RASSMakeMake assumes, that the first
(alphabetically) module without corresponding definition module is the main module.

It is possible that you get some compiler error messages. The reason is usually that Modula-2 is not
defined exactly the same on various compiler implementations. Please read the report "Practical
considerations on writing portable Modula-2 code" (Thoeny, 1994) to get more information about
writing portable Modula-2 code.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 3

If you change the source code, you have to call make again in order to bring your executable
simulation program up do date.

You can use make with three optional parameters: all, clean, and depend. make all is the same as make
without parameter. make clean will remove all object files (the result of the compilation process).
make depend will add the inter module dependencies to the Makefile. This is useful, if you plan to
change your definition modules on the RASS host.

3.4 Running executable simulation programs

The executable simulation program has the same name as the main module of your MDP. It can be
started by typing its name.

If you have stored your data files in another location as the directory where you start your executable
simulation program, you have to specify the path in the environment variable M2PATH. Consult the
documentation of your favoured shell on how to set environment variables. The syntax of M2PATH
is:

path[:path]

where [:path] stands for an optional repetition of :path. The pathes can be given relative to the start
directory or to the root directory.

Examples using csh:

setenv M2PATH Datafiles
setenv M2PATH Datafiles1:Datafiles2
setenv M2PATH /home/users/goofy/RASS/Models/MyModel/Datafiles

If you have used DM library routines which are not yet implemented in the Batch-DM, a file named
RASS.NYI will be created. RASS.NYI contains a list of all calls to those routines. Each line contains
one entry. An entry can have two forms:

NotYetImplemented : RoutineName in ModuleName
FATAL NotYetImplemented : RoutineName in ModuleName

RASS.NYI contains any number of entries of the first form. If an entry of the second form exists, the
program was aborted inside the listed routine. Note that the file RASS.NYI will only be generated if
you have called at least one of the routines, which are not yet implemented. After execution of a
simulation program, you should check the existence of RASS.NYI. If it exists, examine its content. In
order to prevent the examination of an old RASS.NYI, it is recommended to remove or rename it prior
to the next execution of a RASS program.

The filing of the MW library on RASS behaves the same as on the interactive RAMSES. As a result,
you will only get a stash file if at least one monitoriable variable is activated for filing, or if you switch
the filing on by calling SimBase.SetDocumentRunAlwaysMode.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 4

4 Tutorial

This tutorial guides you through a sample RAMSES to RASS transition. The transfer using FTP is
not described here.

The chosen sample model is Sensitivity (File name Sensitivity.MOD) as described in (Fischlin et al.,
1994). It demonstrates a parameter sensitivity analysis of a Michaelis-Menten algae growth model. It
creates an additional window, where it writes the chosen parameter sets.

At the begin, Sensitivity reads its model parameters from the data file Sensitivity.DAT.

4.1 Developing Sensitivity MDP

The model is already developed and produces the following output when ran from within RAMSES
(On a Macintosh, after some window rearrangement):

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 5

4.2 Transferring the MDP Sensitivity to the RASS host

Create a directory named Sensitivity in your home directory on the RASS host:

mkdir ~/Sensitivity

Transfer Sensitivity.MOD and Sensitivity.DAT from your RAMSES host to the RASS host into this
directory using FTP.

On the RASS host change to the directory Sensitivity, check for the presence of the MDP and data
file, and call the shell script MOD2mod:

The output on the terminal should look like:

Your input

You don't have to call DEF2def because the Sensitivity MDP contains no definition modules.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 6

4.3 Building the executable simulation program Sensitivity

The shell script RASSMakeMake generates the Makefile, which you can subsequently use to build
Sensitivity. In the directory ~/Sensitivity use the commands:

RASSMakeMake
make

The output on the terminal should look like:

Your input

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 7

4.4 Running the executable simulation program Sensitivity

Now you can run Sensitivity which will be finished very fast. Then analyse the RASS.NYI:

Your input

Whoops! This transition went wrong. The best thing at this point is, to return to your RAMSES host
and look at the MDP. You will find GetExistingFile twice; first in the import list,

 FROM DMFiles IMPORT GetExistingFile, TextFile, GetReal, SkipGap,

 ReadChars, Close, Response;

and secondly inside the procedure ReadAndSetParameters.

 GetExistingFile(parFile, 'Open parameter file "Sensitivity.DAT"');

As you can see, the call to GetExistingFile has no parameter for a default file name. Therefore, RASS
was unable to continue and terminated your program. In order to prevent this, we replace
GetExistingFile with DMFiles.Lookup in the import list,

 FROM DMFiles IMPORT Lookup, TextFile, GetReal, SkipGap,

 ReadChars, Close, Response;

and inside the procedure ReadAndSetParameters.

 Lookup(parFile, "Sensitivity.DAT", FALSE);

Now we can test our changes on RAMSES and transfer the Sensitivity.MOD again to the RASS host.
There we have to rerun the shell script MOD2mod. We don't have to rerun RASSMakeMake, since
the structure of the MDP hasn't changed.

Rerun make, which builds us finally the new executable simulation program of Sensitivity.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 8

An other run of Sensitivity gives us the following output, which happens to be exactly the same as on
RAMSES:

RASS.NYI contains now:
NotYetImplemented : CreateWindow in DMWindows

Since the batch-DM was designed for non interactive usage, it is unable to create a window, but it
redirects the text written to a window to the standard output file.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 9

5 Trouble shooting

Symptom Possible solutions

The linker doesn't find libMWLib.a or
libMWLib_x.a

The libraries are not in the linker search path. Eventually
ask the local system administrator to put it into an
accessible place.

If the libraries are not in the linker search path (i.e. local to
your home directory), use the environment variable
LD_LIBRARY_PATH to tell the linker where it can find
the library.

The linker complains about an "out of
date" symbol table of libMWLib.a.

Use ranlib to bring the symbol table up to date.

The executable simulation program
doesn't find my data files.

The file names are case sensitive on Unix systems. You
may have to rename some files.

If your data files aren't in the start-up directory, specify
the search path with the environment variable M2PATH.

A MDP file consists only of one line on
my Unix workstation.

You should transfer all your MDPs using FTP in text
(ASCII) mode.

I'm using Fetch as the FTP Client on my
Macintosh computer, and it doesn't allow
me to transfer my RAMSES MDPs in
text mode.

RAMSES on Macintosh computers sets the type of the
MDPs to 'MoTx'. Fetch currently only allows the transfer
of files with the type 'TEXT' in text mode. Use an other
FTP client (e.g. XferIt sfalken@apple.com)

It is also possible to set the preferences of the RAMSES
shell (Modeling session, programming session,
MiniShell) to "export mode". Thereafter the RAMSES
shell will set the type of the touched MDPs to 'TEXT'.

RASS 1.1 Users Guide EPC-Version

jth/June 12, 2003 Page 10

6 Literature

Fischlin, A., 1991. Interactive modeling and simulation of environmental systems on workstations.
In: Richter, D.P.F.M.a.O. (eds.), Dynamic Systems in Medicine, Biology, and Ecology, Berlin:
Springer, 131-145.

Fischlin, A. et al., 1994. ModelWorks 2.2: An Interactive Simulation Environment for Personal
Computers and Workstations. Internal Report # 14, Systems Ecology, ETHZ, .

Thoeny, J., 1994. Practical considerations on portable Modula 2 code. Internal Report # 20, Systems
Ecology Group, ETHZ, .

Thoeny, J., Fischlin, A. & Gyalistras, D., 1994. RASS: Towards bridging the gap between interactive
and off-line simulations. In: J. Halin, W.K.a.R.R. (ed.), CISS - First Joint Conference of International
Simulation Societies, Zuerich, Switzerland, The Society for Computer Simulation International, P.O.
Box 17900, San Diego, Cal. 92177, USA, p.^pp. 99-103.

RASS1 1.1 Developer's Guide
Jürg Thöny

1 LIBRARY ARCHITECTURE ... 1

2 MODULE DESCRIPTIONS... 2
2.1 Portability Layer ... 2

2.1.1 SysDep.. 2
2.1.2 Portab .. 6

2.2 DM-Modules .. 6
2.2.1 DMConversions .. 6
2.2.2 DMFiles .. 6
2.2.3 DMMaster... 7
2.2.4 DMClock... 7
2.2.5 DMMathLib .. 7
2.2.6 DMMessages .. 7
2.2.7 DMStorage.. 7
2.2.8 DMStrings... 7
2.2.9 DMSystem .. 7
2.2.10 DMWindowIO.. 7
2.2.11 DMWindows & DM2DGraphs.. 8
2.2.12 DMEditFields & DMEntryForms... 8
2.2.13 DMMenus... 8

2.3 MW Modules.. 8
2.4 AuxLib Modules ... 8

3 EPC RASS DEVELOPMENT ENVIRONMENT AND TECHNIQUES................... 9
3.1 Libraries .. 9
3.2 Makefiles .. 11
3.3 Tools.. 14

4 FUTURE DEVELOPMENT OF RASS.. 16

5 LITERATURE .. 16

1 RAMSES Simulation Server

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 1

1 Library Architecture

The base architecture of RASS is described in Thoeny (1994).
0 1 2 3 4 5 7 6 25 24 28 27 26 44 40 41 42 43 29 11 22 21 30 31 32 33 10 9 18 34 35 38 12 13 14

0 O X X X X X X X
1 O X X X X X
2 O X X X X X
3 O X X X X
4 O X X X X X X X
5 O X X X X X X
7 O X X X X X X X X X X X X X
6 O X X X X X X X
25 O X X X X
24 O X X X
28 O X X X
27 O X X
26 O X
44 O X X X X X X X X X X
40 O X X X X X X X X X X
41 O X X X X X X X
42 O X X X
43 O X X X X X X X
29 O X X X X X X X
11 O X X X X
22 O X X X X
21 O X X
30 O
31 O X X X X X X X X
32 O X
33 O X X X X
10 O X X X
9 O X
18 O X
34 O X X
35 O X
38 X X X X
12 O X
13 O X
14 O

Table 1: Current RASS MW dependency matrix generated by HierSRC.mod. Note that the DM is combined into one
entry and the imports of SysDep are omitted.

0 ImportMWHigh 26 MatBase 32 JumpTab
1 SimIntegrate 44 MWFunctions 33 MWDocProcs
2 SimDeltaCalc 40 MWRunTimeSys 10 MWVars
3 SimGraphUtils 41 MWRTCHandlers 9 MWTypes
4 SimEvents 42 MWMonitoring 18 MWErrors
5 SimObjects 43 MWDefaults 34 MWDocUtils
7 SimBase 29 MWObjects 35 TFBase
6 SimMaster 11 MWSimLib 38 DM Lib
25 MWSGUBase 22 MWSimLibAux0 12 RASSNotYet
24 Matrices 21 MWSimLBase 13 SysDep
28 MatShape 30 MWEvtBase 14 Portab
27 MatCopy 31 MWFiling

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 2

2 Module descriptions

2.1 Portability Layer

2.1.1 SYS DEP

SysDep encapsulates the interface to the local System. It's implementation module has to be
reimplemented on every new RASS host. The interface is the following:

 (* file IO *)

 CONST

 SDNullDevice = -1;

 SDStdInput = 0;

 SDStdOutput = 1;

 SDStdError = 2;

 VAR

 SDEol : CHAR; (* readOnly variable *)

 SDDirSeperator : CHAR; (* readOnly variable *)

 SDM2PathEnvVarName : ARRAY[0..10] OF CHAR; (* readOnly variable *)

 TYPE

 SDFile = INTEGER;

 SDFileResult = (SDDone, SDFileNotFound, SDTooManyFiles,

 SDNoWriteAccess, SDNoReadAccess,

 SDFileNameWrong,

 SDOtherResult);

 PROCEDURE SDLookup (VAR file : SDFile; fileName: ARRAY OF CHAR;

 readOnly, new, binary : BOOLEAN);

 PROCEDURE SDDelete (fileName : ARRAY OF CHAR);

 PROCEDURE SDRename (oldName, newName : ARRAY OF CHAR);

 PROCEDURE SDClose (VAR file : SDFile);

 PROCEDURE SDFlush (file : SDFile);

 PROCEDURE SDEOF (file : SDFile) : BOOLEAN;

 PROCEDURE SDTruncateFile(file : SDFile);

 PROCEDURE SDFileRead (file : SDFile; buffer: ADDRESS; size: LONGCARD): LONGCARD;

 PROCEDURE SDFileWrite (file : SDFile; buffer: ADDRESS; size: LONGCARD): LONGCARD;

 PROCEDURE SDGetFileSize (file : SDFile) : LONGCARD;

 PROCEDURE SDGetFilePos (file : SDFile) : LONGCARD;

 PROCEDURE SDSetFilePos (file : SDFile; pos : LONGCARD);

 PROCEDURE SDLastFileResult () : SDFileResult;

Three standard files are defined: SDStdInput, SDStdOutput and SDStdError. A undefined file is
identified by SDNullDevice. Every operation on the SDNullDevice file has no effect at all.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 3

An end of line in a text file is defined by SDEol on interface level. SysDep will translate them to the
local usage (i.e. line-feed on Unix, carriage-return on a Mac, or carriage-return/line-feed on a MS-
DOS PC). The client of SysDep has to use SDEol in order to get the desired result.

SDDirSeperator exports the character which is used by the operating-system to separate directory
levels (i.e. ":" on a Mac, "/' on Unix, or "\| on a MS-DOS PC).

SDPathEnvName contains the name of the environment variable which identifies the search path for
M2 files. It is used by the Lookup procedure of DMFiles. It is set to "PATH" on the Mac
implementation (denotes the PATH section of the User.Profile), and to "M2PATH" on the SUN
implementation.

SDFile is the type of the file variables which can be used by the procedures from SysDep which
operates on files.

Every file procedure of SysDep generates a result of the type SDFileResult. The result of the last file
operation can be requested by the function SDLastFileResult.

SDLookup opens a file with name fileName and access mode readOnly, new and binary. It returns the
file identification in the VAR parameter file. If readOnly is TRUE, the file access is opened read only.
If readOnly is FALSE, the file has read and write access. If new is TRUE, a new file will be created. If
a file named fileName already exists, it will be truncated to length zero. If new is FALSE, the file must
exists to complete the operation successfully.

SDDelete deletes the file fileName, SDRename renames the file oldName to newName, and SDClose
closes the file, which is identified by file. SDFlush flushes the file buffer of the operating system.

SDEOF returns TRUE if the access pointer has reached the end of file. SDTruncateFile truncates the
file at the current file position.

SDFileRead/Write reads/writes the content of buffer with size. The number of bytes actually
read/written are returned as the function value.

SDGetFileSize returns the size of file in bytes. SDGetFilePos returns the current position in the file.
SDSetFilePos sets the current position to pos.

 (* dynamic memory i.e. Heap *)

 PROCEDURE SDAlloc (VAR a : ADDRESS; byteCount: LONGCARD);

 PROCEDURE SDDealloc (VAR a : ADDRESS);

 PROCEDURE SDValidPtr(a : ADDRESS) : BOOLEAN;

SDAlloc allocates a heap-block of size byteCount. The heap-block is aligned to Portab.MaxAlign.
SDDealloc deallocates a previous allocated heap-block. SDValidPtr returns TRUE if a might be a
valid address.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 4

 (* Time *)

 CONST

 SDJan = 1; SDFeb = 2; SDMar = 3; SDApr = 4; SDMai = 5; SDJun = 6;

 SDJul = 7; SDAug = 8; SDSep = 9; SDOct = 10; SDNov = 11; SDDec = 12;

 SDSun = 1; SDMon = 2; SDTue = 3; SDWed = 4; SDThu = 5; SDFri = 6; SDSat = 7;

 (* hour is always within range [0..23] *)

 TYPE

 SDTime;

 SDDate = RECORD

 year, month, day,

 hour, minute, second, sec100,

 dayOfWeek : INTEGER;

 END;(*RECORD*)

 PROCEDURE SDGetTime (VAR time : SDTime);

 PROCEDURE SDTimeToDate (time : SDTime; VAR date : SDDate);

 PROCEDURE SDDateToTime (date : SDDate; VAR time : SDTime);

SysDep encapsulates the time in the opaque type SDTime. SDGetTime returns the current system
time in the parameter time. SDTimeToDate/SDDateToTime are routines to convert between SDTime
and SDDate.

 (* Environment *)

 PROCEDURE SDGetArgCount (): CARDINAL;

 PROCEDURE SDGetArgument (argNum : CARDINAL; VAR argument: ARRAY OF CHAR);

 PROCEDURE SDGetEnvVar (varName : ARRAY OF CHAR; VAR varValue : ARRAY OF CHAR);

 PROCEDURE SDGetEnvVarListElem(varName : ARRAY OF CHAR;

 index : INTEGER;

 VAR elemValue : ARRAY OF CHAR);

Program arguments are only supported on systems which supports them. SDGetArgCount returns the
number of arguments. A specific argument can be retrieved by SDGetArgument.

The value of an environment variable can be accessed by SDGetEnvVar. If the environment variable
with name varName doesn't exists, a string with length zero is returned. On the Mac implementation
SDGetEnvVar returns the content of the section varName of the User.Profile. Since an environment
variable can contain a list (i.e. the PATH) and the divider of list elements is system dependent, a
procedure SDGetEnvVarListElem is provided.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 5

 (* Termination *)

 PROCEDURE SDSetTermProc (p : PROC; VAR done : BOOLEAN);

 PROCEDURE SDExit (status: INTEGER);

 PROCEDURE SDExitMsg (status: INTEGER; module, procedure, reason : ARRAY OF CHAR);

SDSetTermProc allows to add cleanup procedures. On termination of a program, they are called in the
reverse order of their installation.

SDExit terminates a program with the status code status. SDExitMsg writes also a termination
message to SDStdError.

 (* Interprocessing *)

 TYPE

 SDLocalMsgID = INTEGER;

 SDLocalMsgProc = PROCEDURE(ADDRESS);

 PROCEDURE SDSetLocalMsgHandler(msgID : SDLocalMsgID; handler : SDLocalMsgProc;

 VAR done : BOOLEAN);

 PROCEDURE SDGetLocalMsgHandler(msgID : SDLocalMsgID; VAR handler : SDLocalMsgProc);

 PROCEDURE SDSendLocalMessage (msgID : SDLocalMsgID; msg : ADDRESS);

(* channels are not designed yet. Idea: a channel is a connection between two host

 consisting of two two-way streams:

 command stream: text

 data stream: binary data with translation facility

*)

A message handler is a procedure with an address parameter. Many message handlers can be installed
by SDSetLocalMsgHandler. SDGetLocalMsgHandler retrieves the message handler with the
identification msgID. A message handler can be triggered to send the message msg by calling
SDSendLocalMessage. This mechanism can be used to implement the DialogMachineTask procedure
(e.g. calling GetNextEvent in the Mac implementation to enable the co-operative multitasking).

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 6

2.1.2 POR TAB

Portab exports a set of base types which differ among Modula-2 implementations. This supports the
programming of portable Modula-2 code. Main clients of Portab are DMConversions and SysDep.

 TYPE

 CARD16 = SHORTCARD; (* SUN EPC Modula 2 *)

 CARD32 = CARDINAL; (* SUN EPC Modula 2 *)

 CARDADR = CARDINAL; (* SUN EPC Modula 2 *)

 INT16 = SHORTINT; (* SUN EPC Modula 2 *)

 INT32 = INTEGER; (* SUN EPC Modula 2 *)

(*

 CARD16 = CARDINAL; (* MacMETH *)

 CARD32 = LONGCARD; (* MacMETH *)

 CARDADR = LONGCARD; (* MacMETH *)

 INT16 = INTEGER; (* MacMETH *)

 INT32 = LONGINT; (* MacMETH *)

*)

 VAR

 MaxAlign : INTEGER; (* the biggest alignment for the base types *)

Typically the definition module of Portab has to be redefined for every new RASS implementation. I
recommend to define the whole type-set anew and to keep the other sets for documentary purpose as
comment.

MaxAlign is the maximum alignment boundary of all the base types (i.e. LONGINT/LONGREAL).
MaxAlign is calculated by standard Modula-2 code and is not guaranteed to be correct. Please check
its actual value when you encounter strange behaviour with dynamic data (i.e. wrong calculations).

2.2 DM-Modules

For a description of the DM interface see the according DM literature (Fischlin, 1986; Fischlin et al.,
1987; Fischlin & Schaufelberger, 1987; Keller, 1989). This documentation describes only the special
Batch-DM implementation details. The concept of the Batch-DM is described in (Thoeny et al.,
1994).

2.2.1 DMCONVER S IONS

The module DMConversions is implemented using only standard Modula-2 code; no calls to system
software are made. It is therefore fully portable. However, its efficiency could be improved.

2.2.2 DMFILES

DMFiles uses SysDep.SDPathEnvVarName as the search path for Lookup. The single path
components are extracted using SysDep.SDGetEnvVarListElem. This provides a portability between
various RASS platforms.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 7

2.2.3 DMMAS TER

Most of the procedures and functions of DMMaster are not yet implemented. The procedure
DialogMachineTask calls the local message handler zero from SysDep. Therefore RASS could be
easily extended by adding a handling of DM-Events.

2.2.4 DMCLOC K

Only the procedures Now and Today are implemented.

2.2.5 DMMATHLIB

The DMMathLib is implemented with direct calls to the C-Math library.

2.2.6 DMMES S AGES

The messages are written to the SDStdOutput. Since the writing is done using a file variable, it is easy
to change it to another device. Abort writes the three paragraph parameters to SDStdOutput and calls
SDExit with exit status one.

2.2.7 DMSTOR AGE

DMStorage is fully implemented, but the levels are ignored.

2.2.8 DMSTR INGS

All procedures which are string resource operations are not implemented.

2.2.9 DMSYS TEM

The DMLevel is forced to the DMSystem.startupLevel. All ScreenSize and color related procedures
return zero. The ComputerSystem, Keyboard, and CPU are reported as unknown. FPU is FALSE.
The SystemVersion and RomVersion are reported as unknown. InitProcs are not supported. The
installed TermProcs are called only once - at program termination.

2.2.10 DMW INDOWIO

All write operations are redirected to SDStdOutput. Since the writing is done using a file variable, it is
easy to change it to another device. SetPos tries to achieve the desired position in X-coordinates. If the
desired column is smaller than the current X-coordinate then a new line is inserted. All graphical
output related procedures are not supported. All mouse position procedures report the position (0,0).

Some WriteLongXYZ procedures are not implemented yet.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 8

2.2.11 DMW INDOWS & DM2DGR AP HS

All DMWindows and DM2DGraphs procedures are not implemented. Later implementations should
maintain the window data structures internally to support programs which rely on the internal state of
these structures.

2.2.12 DMEDITFIELDS & DMENTR YFOR MS

All procedures are not implemented yet. This gives the default behaviour.

2.2.13 DMMENUS

The menus data structures are maintained internally but the menus are not shown on the screen. This
was necessary, because many clients request the internal state of a menu (i.e. using MenuExists,
CommandExists, IsCommandChecked) to maintain the program state.

2.3 MW Modules

The interface is exactly the same as that of the interactive Version 2.2. For a description see the
according MW literature (Fischlin et al., 1994). The basis was the MW 2.2 library. All interactive
components have been commented out. As a consequence of this procedure, the curve attributes are
not defined and can not be written to the stash files. The default attributes are written instead (i.e.
autoDefCStr, autoDefSStr). This allows to open the stash files from within the PostAnalysis session.

The only change in the program control is the procedure RunSimEnvironment. If an experiment is
installed, it calls SimExperiment instead of calling RunDialogMachine. If no experiment is installed it
calls SimRun.

2.4 AuxLib Modules

The core of the AuxLib modules were ported and included in the RASS library.

The Matrix package is only available in a old version (O. Roth's version 1991). The new (af) version
is right now not portable from MacMETH to an other Modula-2 compiler.

The body of the DisplayArray procedure of StochStat is commented out. The reason is, that the
implementation tries to work with simulated open arrays (defined as a POINTER TO
ARRAY[0..8000] OF REAL), which leads to a page fault on protected memory systems.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 9

3 EPC RASS Development environment and techniques

This chapter describes the RASS development environment on a Unix Workstation using the EPC
Modula-2 compiler. The RASS development environment is organised in a hierarchical tree of
directories. On the top-level are: SysDep, AuxLibDev, DMLibDev, MWLibDev, tools, and Models.

DMLibDev is subdivided into CoreHigh and OptHigh. All modules contained in CoreHigh are
referenced by the MW library. The modules in OptHigh are modules which are referenced by many
MW simulation models. Note, that this doesn't reflect the interactive DM's kernel and optional module
structure. (cfg. Table 2).

MWLibDev is subdivided into High.MOD and Base.MOD, which reflects the organisation of the
Mac development environment.

The RASS MW library contains all modules (object and definition) of the mentioned hierarchy.

The directory tools contains shell scripts which are of use for the user of RASS.

The directory Models contains some sample MDPs, which are included for testing purposes.

3.1 Libraries

The Unix tool ar is used to create the libraries.

Since ar is restricted to filenames with a maximum of 15 characters (including "." and extension),
special care has to be taken for files with longer names. All editing is done on the files with the
original name length. They are copied to files with names of 15 characters prior compilation or library
archiving. To enable the EPC compiler to find the real names, a special file named __.ALIASES has to
be included in an archive. This file contains aliases for module names in the form:
ModuleName:ShortName (cfg. Table 2).

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 10

Library Modules Aliases

SysDep SysDep Portab RASSNotYet NONE

DMCore DMFiles DMConversions DMMaster DMStrings
DMSystem DMWindowIO DMWindows DMClock
DMStorage DMMessages DMMathLib

DMConversions:DMConvers

DMOpt DM2DGraphs DMEntryForms DMEditFields DMMenus DMEditFields:DMEditF
DMEntryForms:DMEntryF

AuxLib TabFunc TFTypesA TFBase TFDocProcs TFEdit
TFFuncs TFMenus Matrices JumpTab Histograms
StochStat MathProcs RandGen Lists
MultiNormal Jacobi RandNormal ReadData
MatBase MatCopy MatShape RandGen0

TFTypesAndVars:TFTypesA

MWBase MWDefaults MWFunctions MWSimLBase MWDocProcs
MWMonitoring MWSimLib MWDocUtils MWObjects
MWSimLibA0 MWErrors MWRTCHandlers MWSimLibA1
MWEvtBase MWRunTimeSys MWTypes MWFiling
MWSGUBase MWVars

MWSimLibAux0:MWSimLibA0
MWSimLibAux1:MWSimLibA1
MWRunTimeSys:MWRunTimeS
MWRTCHandlers:MWRTCHand
MWMonitoring:MWMonitori

MWHigh SimBase SimGraphUtils SimObjects
SimDeltaCalc SimIntegrate SimEvents
SimMaster

SimGraphUtils:SimGraphU
SimIntegrate:SimInte
SimDeltaCalc:SimDeltaC

Table 2: All RASS libraries with the corresponding modules and the aliases. The library files are named libXXX.a and
libXXX_x.b (where XXX is the name of the library). The libXXX.a files contain all object files and the libXXX_x.a
files all definition modules and the __.ALIASES file.

All RASS libraries are combined into libMWLib.a and libMWLib_x.a. These two files should be
installed in /usr/local/lib. This location is in the ld search path and can be accessed by anybody on our
SUN-Network. Note that ranlib has to be called every time the libraries are copied.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 11

3.2 Makefiles

The Makefiles are structured in the same fashion as the RASS directories. The main Makefile is in the
root directory of the RASS development environment. It is not possible to use any Makefile in the
sub-directories directly, they are to be called from within the main Makefile. All Makefiles contain
three main rules:

1. all: this is the first rule, and therefore also the standard rule. It has the library of the directory
where the Makefile resists as it's target. It generate also some basic library test programs.

2. clean: this rule deletes all object and library files.

3. depend: this rule adds dependency rules to the end of the Makefile.

depend :

-csh -c 'setenv M2FLAGS "$(M2FLAGS)"; listdepf > makedep'

echo '/^# DEPENDS/a' > eddep

echo >> eddep

echo '.' >> eddep

echo '.,$$d' >> eddep

echo '$$r makedep' >> eddep

echo 'w' >> eddep

-ed - Makefile < eddep

rm -f eddep makedep

DEPENDS -- make depend needs this line

It is a csh script which uses listdepf (see Tools) to generate a list of dependency rules. Then
it uses ed to edit the Makefile (i.e. to find the line with "# DEPENDS", to delete the rest of
the file, and to add the dependencies). Finally it removes the temporary files makedep and
eddep, which have been generated during this procedure.

Main Makefile:

M2GLOBALFLAGS = -sun -D0 -nobounds -norange

RASSHOME=$(PWD)

Definition of the flags for all calls to the driver program of the EPC Modula-2 compiler. The switch
-sun activates the compiler's SUN mode, and tells the linker to use the SUN library. Note, that the
switch -sun works also with the EPC Modula-2 compiler on the IBM AIX machines. The home of the
development environment is set to the value of the environment variable PWD (this is the string of the
current working directory).

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 12

all :

 (cd SysDep; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

 (cd DMLibDev/OptHigh.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

 (cd DMLibDev/CoreHigh.MOD;make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

 (cd AuxLibDev; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

 (cd MWLibDev/Base.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

 (cd MWLibDev/High.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" all)

clean :

 (cd SysDep; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" clean)

 (cd DMLibDev/OptHigh.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)"

clean)

 (cd DMLibDev/CoreHigh.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)"

clean)

 (cd AuxLibDev; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" clean)

 (cd MWLibDev/Base.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" clean)

 (cd MWLibDev/High.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" clean)

 rm -f *.o *.a

depend :

 (cd SysDep; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" depend)

 (cd DMLibDev/OptHigh.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)"

depend)

 (cd DMLibDev/CoreHigh.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)"

depend)

 (cd AuxLibDev; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" depend)

 (cd MWLibDev/Base.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" depend)

 (cd MWLibDev/High.MOD; make M2GLOBALFLAGS="$(M2GLOBALFLAGS)" RASSHOME="$(RASSHOME)" depend)

The rules all, clean and depend call the corresponding Makefiles rules in the RASS hierarchy.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 13

mwlib :

 echo -n > __.ALIASES

 rm -f libMWLib.a

 -sh -c 'mkdir tmplib; cd tmplib;\

 for f in ../*/lib*[!x].a ../*/*/lib*[!x].a;\

 do ar x $$f;\

 rm -f __.*;\

 ar cur ../libMWLib.a *;\

 rm -f *;\

 done;\

 cd ..; rmdir tmplib;\

 ranlib libMWLib.a'

mwlib_x :

 echo -n > __.ALIASES

 rm -f libMWLib_x.a

 -sh -c 'mkdir tmplib; cd tmplib;\

 for f in ../*/lib*_x.a ../*/*/lib*_x.a;\

 do ar x $$f;\

 if [-f __.ALIASES]; then\

 cat -s __.ALIASES >> ../__.ALIASES;\

 fi;\

 rm -f __.*;\

 ar cur ../libMWLib_x.a *;\

 rm -f *;\

 done;\

 cd ..; rmdir tmplib;\

 ar ur libMWLib_x.a __.ALIASES; ranlib libMWLib_x.a'

The rules mwlib and mwlib_x create the RASS MW object library resp. definition library, which
contain all libraries of RASS.

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 14

3.3 Tools

The rule depend of the RASS Makefiles call a shell script named listdepf.

#!/bin/csh

foreach file (*.mod)

 set obj=`basename $file .mod`.o

 em2 -twy $M2FLAGS $file | \

 sed /is\ found\ in/\!d | \

 sed "s/.*is found in.\(.*\)/"$obj": \1/" | \

 uniq

end

listdepf uses the EPC Modula-2 compiler to get a list of dependencies for all *.mod files in the current
directory. If RASS has to be ported to another Modula-2 compiler, listdepf has to be rewritten. The
Modula-2 program GetImports.mod (also in the tools directory) could be used whithin a new version
of listdepf .

The shell scripts MOD2mod and DEF2def rename all .MOD files in the current directory to .mod
(resp. .DEF to .def).

RASSMakeMake is a tool which helps the user of RASS to generate a skeleton Makefile for his
MDPs. Only one MDP is supported per directory.

#!/bin/sh

echo "RASSMakeMake v1.1 jth 12/94"

#

we don't overwrite an existing Makefile

echo

if [-f Makefile]; then

 echo "The Makefile alredy exist. Please remove or rename it first"

 exit

fi

#

generate a list of the object files in OBMS and assume, that

the first module without a definition module is the main module

and therefore the target.

OBMS=""

mainmod=`basename "$1" .mod`

for f in *.mod ; do

 OBMS="$OBMS `basename $f .mod`.o"

 if [! -f `basename $f .mod`.def]; then

 if ["$mainmod" = ""]; then

 mainmod="`basename $f .mod`"

 fi

 fi

done

export OBMS

export mainmod

echo "Generating Makefile"

#

put the content of the Makefile to stdout and redirect it into a file

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 15

called Makefile (why not)

{

sed "s/^X//" << TEXT_STOP

X

XM2CFLAGS = -sun -D0 -iMWLib_x

XM2LFLAGS = -sun -D0 -lMWLib

X

X.SUFFIXES: .o .mod

X

X.mod.o:

X em2 $(M2CFLAGS) -c -o \$*.o \$*.mod

X

TEXT_STOP

echo -n "OBMS = $OBMS"

echo

echo

echo "all : $mainmod"

echo

echo "$mainmod: \$(OBMS) Makefile"

echo " em2 \$(M2LFLAGS) -o $mainmod \$(OBMS) -iSM2 -ltermcap"

echo

sed "s/^X//" << TEXT_STOP

Xclean :

X rm -f *.o *.a

X

Xdepend :

X -csh -c 'setenv M2FLAGS "$(M2CFLAGS)"; listdepf > makedep'

X echo '/^# DEPENDS/a' > eddep

X echo >> eddep

X echo '.' >> eddep

X echo '.,\$\$d' >> eddep

X echo '\$\$r makedep' >> eddep

X echo 'w' >> eddep

X -ed - Makefile < eddep

X rm -f eddep makedep

X

X

X# DEPENDS -- dont remove this line, make depends needs it

TEXT_STOP

} > Makefile

#

tell the user what we have done

echo "done"

echo "---"

echo "The default make rule is: all."

echo "It has the main model $mainmod as it's target."

echo

echo "The rule: clean"

echo "removes all object files"

echo

echo "The rule: depend"

echo "adds the inter-module dependencies to the generated Makefile"

RASS 1.1 Developer's Guide

jth, June 12, 2003 Page 16

4 Future development of RASS

The directory pvm contains some prototypes of MDPs, which run on distributed systems. The pvm
library is necessary to use them (installed on baikal.ethz.ch, obtained from netlib2.cs.utk.edu).

The AuxLib should be completed, such that at minimum all sample models of the RAMSES
distribution are supported.

The internal windows data structures of DMWindow should be maintained, such that a program
which relies on them shares the same behaviour using the Batch-DM or the interactive DM.

The transition from RAMSES to RASS could be improved. Especially the conversation of text files
(MDPs and data files) is not yet supported by the RASS tools. Only the renaming (MOD2mod and
DEF2def) is provided.

DMSystem does report the ComputerSystem as unknown. This is annoying, since it is therefore not
possible to see where a stash file is created. To keep DMSystem portable it should be able to get a
ComputerSystem identification string from SysDep.

5 Literature

Fischlin, A., 1986 Simplifying the usage and the programming of modern working stations with
Modula-2: The 'Dialog Machine'. (Internal report, Project-Centre IDA/CELTIA, Swiss Federal
Institute of Technology Zürich (ETHZ), Zürich, Switzerland):

Fischlin, A. et al., 1994. ModelWorks 2.2: An Interactive Simulation Environment for Personal
Computers and Workstations. Internal Report # 14, Systems Ecology, ETHZ, .

Fischlin, A., Mansour, M.A., Rimvall, M. & Schaufelberger, W., 1987. Simulation and computer
aided control system design in engineering education. In: I. Troch, K., P. & Breitenecker, F. (ed.),
Simulation of Control Systems, 459pp., Pergamon Press, Oxford a.o., p.^pp. 51-60.

Fischlin, A. & Schaufelberger, W., 1987. Arbeitsplatzrechner im technisch-naturwissenschaftlichen
Hochschulunterricht. Bulletin SEV/VSE. , 78: 15-21.

Keller, D., 1989 Introduction to the Dialog Machine. (Bericht Nr. 5, Projektzentrum IDA, ETH
Zürich): 37 pp.

Thoeny, J., Fischlin, A. & Gyalistras, D., 1994. RASS: Towards bridging the gap between interactive
and off-line simulations. In: J. Halin, W.K.a.R.R. (ed.), CISS - First Joint Conference of International
Simulation Societies, Zuerich, Switzerland, The Society for Computer Simulation International, P.O.
Box 17900, San Diego, Cal. 92177, USA, p.^pp. 99-103.

BERICHTE DER FACHGRUPPE SYSTEMÖKOLOGIE
SYSTEMS ECOLOGY REPORTS

ETH ZÜRICH

Nr./No.

1 FISCHLIN, A., BLANKE, T., GYALISTRAS, D., BALTENSWEILER, M., NEMECEK, T., ROTH, O.
& ULRICH, M. (1991, erw. und korr. Aufl. 1993): Unterrichtsprogramm "Weltmodell2"

2 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Stabilität"

3 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Drosophila"

4 ROTH, O. (1990): Maisreife - das Konzept der physiologischen Zeit

5 FISCHLIN, A., ROTH, O., BLANKE, T., BUGMANN, H., GYALISTRAS, D. & THOMMEN, F.
(1990): Fallstudie interdisziplinäre Modellierung eines terrestrischen Ökosystems unter
Einfluss des Treibhauseffektes

6 FISCHLIN, A. (1990): On Daisyworlds: The Reconstruction of a Model on the Gaia Hypothesis

7 * GYALISTRAS, D. (1990): Implementing a One-Dimensional Energy Balance Climatic Model on a Microcomputer (out of print)

8 * FISCHLIN, A., & ROTH, O., GYALISTRAS, D., ULRICH, M. UND NEMECEK, T. (1990): ModelWorks - An Interactive Simulation
Environment for Personal Computers and Workstations (out of printÆ for new edition see title 14)

9 FISCHLIN, A. (1990): Interactive Modeling and Simulation of Environmental Systems on
Workstations

10 ROTH, O., DERRON, J., FISCHLIN, A., NEMECEK, T. & ULRICH, M. (1992): Implementation
and Parameter Adaptation of a Potato Crop Simulation Model Combined with a Soil Water
Subsystem

1 1* NEMECEK, T., FISCHLIN, A., ROTH, O. & DERRON, J. (1993): Quantifying Behaviour Sequences of Winged Aphids on Potato
Plants for Virus Epidemic Models

12 FISCHLIN, A. (1991): Modellierung und Computersimulationen in den Umweltnaturwissen-
schaften

13 FISCHLIN, A. & BUGMANN, H. (1992): Think Globally, Act Locally! A Small Country Case
Study in Reducing Net CO2 Emissions by Carbon Fixation Policies

14 FISCHLIN, A., GYALISTRAS, D., ROTH, O., ULRICH, M., THÖNY, J., NEMECEK, T.,
BUGMANN, H. & THOMMEN, F. (1994): ModelWorks 2.2 – An Interactive Simulation
Environment for Personal Computers and Workstations

15 FISCHLIN, A., BUGMANN, H. & GYALISTRAS, D. (1992): Sensitivity of a Forest Ecosystem
Model to Climate Parametrization Schemes

16 FISCHLIN, A. & BUGMANN, H. (1993): Comparing the Behaviour of Mountainous Forest
Succession Models in a Changing Climate

17 GYALISTRAS, D., STORCH, H. v., FISCHLIN, A., BENISTON, M. (1994): Linking GCM-
Simulated Climatic Changes to Ecosystem Models: Case Studies of Statistical Down-
scaling in the Alps

18 NEMECEK, T., FISCHLIN, A., DERRON, J. & ROTH, O. (1993): Distance and Direction of
Trivial Flights of Aphids in a Potato Field

19 PERRUCHOUD, D. & FISCHLIN, A. (1994): The Response of the Carbon Cycle in Undisturbed
Forest Ecosystems to Climate Change: A Review of Plant–Soil Models

20 THÖNY, J. (1994): Practical considerations on portable Modula 2 code

21 THÖNY, J., FISCHLIN, A. & GYALISTRAS, D. (1994): Introducing RASS - The RAMSES
Simulation Server

* Out of print

Erhältlich bei / Download from
http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

Diese Berichte können in gedruckter Form auch bei folgender Adresse zum Selbstkostenpreis bezogen werden /
Order any of the listed reports against printing costs and minimal handling charge from the following address:

SYSTEMS ECOLOGY ETHZ, INSTITUTE OF TERRESTRIAL ECOLOGY
GRABENSTRASSE 3, CH-8952 SCHLIEREN/ZURICH, SWITZERLAND

22 GYALISTRAS, D. & FISCHLIN, A. (1996): Derivation of climate change scenarios for
mountainous ecosystems: A GCM-based method and the case study of Valais, Switzerland

23 LÖFFLER, T.J. (1996): How To Write Fast Programs

24 LÖFFLER, T.J., FISCHLIN, A., LISCHKE, H. & ULRICH, M. (1996): Benchmark Experiments on
Workstations

25 FISCHLIN, A., LISCHKE, H. & BUGMANN, H. (1995): The Fate of Forests In a Changing
Climate: Model Validation and Simulation Results From the Alps

26 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: Derivation of methods

27 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: A comparison of methods

28 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Aggregation of Individual Trees and Patches
in Forest Succession Models: Capturing Variability with Height Structured Random
Dispersions

29 FISCHLIN, A., BUCHTER, B., MATILE, L., AMMON, K., HEPPERLE, E., LEIFELD, J. &
FUHRER, J. (2003): Bestandesaufnahme zum Thema Senken in der Schweiz. Verfasst im Auftrag
des BUWAL

30 KELLER, D., 2003. Introduction to the Dialog Machine, 2nd ed. Price,B (editor of 2nd ed)

http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

